ИННОВАЦИИ БИЗНЕСУ

ПОДРОБНАЯ ИНФОРМАЦИЯ

Заявку на получение дополнительной информации по этому проекту можно заполнить здесь.

Номер

30-034-05

Наименование проекта

Способ электрохимического укрепления горных пород

Назначение

Сокращение сроков работ, повышение качества электрохимического упрочнения горных пород.

Рекомендуемая область применения

При строительстве горных выработок в обводненных неустойчивых горных породах, в наземном строительстве при укреплении грунтов в основаниях зданий и сооружений.

Описание

Результат выполнения технологической разработки.

В данном способе, включающем геологические изыскания, лабораторные испытания образцов горных пород, обоснование режима упрочнения, установку катодных и анодных электродов-инъекторов, электроосмотическое нагнетание укрепляющего раствора с параллельной откачкой грунтовой воды, обеспечение набора прочности массива до требуемого уровня в процессе твердения укрепляющего раствора до начала ведения горно-строительных работ, дополнительно измеряют показатели прочности и удельное электрическое сопротивление образцов пород, насыщенных укрепляющим раствором применяемого состава и концентрации в процессе твердения раствора, устанавливают взаимосвязь между ними, после завершения электроосмотического нагнетания в средней части массива устанавливают электрические датчики, измеряют эффективное удельное электросопротивление массива, оценивают по установленной зависимости изменение прочности пород, а горно-строительные работы начинают после достижения массивом требуемого уровня прочности.

Если требуемый уровень прочности пород достигается раньше запланированного срока более чем на 20%, то корректируют режим электрохимического укрепления, применяя на последующих участках менее концентрированные растворы, более низкий уровень плотности тока или сокращают сроки электрообработки.

По результатам контроля определяют необходимое время достижения массивом требуемого уровня прочности и, если это время превышает плановые сроки более чем на 20%, на участках установки датчиков производят повторное нагнетание, корректируют режим, применяя на последующих участках более концентрированные растворы, увеличивают плотность тока или увеличивают сроки электрообработки.

В качестве электрических датчиков используют электроды-инъекторы.

Сущность способа поясняется чертежами. На фиг. 1 представлен общий вид графиков зависимостей коэффициента сцепления К (основного параметра для сыпучих пород) и удельного электросопротивления пород rот времени t (а и б) и полученная на их основе тарировочная зависимость К ( r) (в) при различных концентрациях раствора c(c 3 > c 2 > c 1). На фиг. 2 приведена схема электрофизического контроля (1 - электроды-инъекторы; 2 - укрепленный массив в приэлектродных зонах; 3 - зона с наименьшей прочностью; 4 - измерительные электроды-датчики; 5 - измерительный прибор). На фиг. 3 представлены характерные графики зависимости k(t) на контрольном участке (К Н, К К - соответственно нормативные и контрольные значения К; t 0, t к, t пл, t гс - соответственно моменты начала контроля, текущего контроля, планового завершения укрепительных работ, начала горно-строительных работ).

Осуществляют способ следующим образом.

В лабораторных условиях на образцах упрочняемых пород после насыщения раствором измеряют коэффициент сцепления К и удельное электросопротивление r по мере схватывания раствора с течением времени t (фиг. 1,а,б). Обе величины возрастают по мере связывания влаги и увеличения прочности пород, поэтому тарировочная зависимость способа К ( r) (фиг. 1, в) близка к линейной. Зависимость К ( r) может быть получена как для конкретной концентрации раствора c, применяемой в проекте, так и для различных концентраций, что расширяет возможности управления процессом упрочнения на последующих этапах.

По данным геологических изысканий, фильтрационным и электрофизическим параметрам горных пород расчетным путем определяют необходимую толщину упрочненной оболочки и требуемую прочность (сцепление) пород. С учетом геометрических параметров выработки бурят скважины, устанавливают электроды-инъекторы, подключают их к электросиловой установке и производят электроосмотическое насыщение массива участками, при этом концентрация раствора, плотность тока и время инъекции принимают по проекту. После завершения инъецирования на начальном участке производят контрольные измерения, причем для устранения помех измерения проводят в перерывах работы силовой установки на соседнем участке.

В качестве питающих электродов установки используют электроды-иньекторы 1. Измерительные штыревые электроды 4 устанавливают в средней части упрочняемого участка, где находится зона с наименьшей прочностью 3. Участки 2, прилегающие к электродам 1, насыщаются раствором в наибольшей степени, поэтому имеют большую прочность. При смене полярности электродов 1 в процессе электроосмотического инъецирования размеры зон 2 примерно равны. Четырехэлектродную установку подключают к измерительному прибору 5, фиксируют ток i в питающей цепи ab и падение напряжения u в измерительной цепи mn. Величину эффективного удельного электросопротивления контролируемого участка массива rопределяют по формуле

где К y - коэффициент, зависящий от расстояний между электродами.

По результатам измерений строят график изменения электросопротивления r (t), а с учетом тарировочной зависимости К ( r) (фиг. 1, в) - график изменения прочности (сцепления) породы k(t) по мере схватывания раствора (фиг. 3, а). В момент t гс, когда величина К достигнет проектного нормативного уровня Н, операцию укрепления массива считают законченной и переходят к контролю на следующем участке или к началу горно-строительных работ.

Момент t гс, установленный по данным геоконтроля, может не совпадать с плановым сроком t пл укрепления пород вследствие неточности исходных данных, погрешностей методики расчета технологических параметров упрочнения, неоднородности свойств массива и других факторов. Если различие t гс и t пл превышает 20%, необходимо корректирование технологического режима. Уровень 20% соответствует общепринятому уровню погрешности геоэлектрического контроля механического состояния массива.

Если уровень прочности К Н достигается при t гс < t="">пл, то на последующих участках применяют менее концентрированные растворы, уменьшают уровень плотности тока или сокращают сроки электрообработки (фиг. 3, б). Если по результатам контроля в момент t к из аппроксимированного графика k(t) следует, что t гс > t пл, то принимают меры, обратные перечисленным выше, то есть интенсифицируют процесс электрообработки (фиг. 3, в). Кроме того, в последнем случае для повышения качества упрочнения массива, то есть для устранения зон с пониженной прочностью на данных участках проводят дополнительное упрочнение, применяя более концентрированные растворы с использованием прежней установки нагнетания, или проводят работы по специальному проекту.

Таким образом, применение описанного способа контролируемого электрохимического упрочнения горных пород позволяет за счет более точного фиксирования момента достижения упрочняемым массивом требуемого уровня прочности сократить сроки строительства, снизить трудозатраты, расход электроэнергии и материалов, а также исключить наличие ослабленных зон в упрочненном массиве.

Пример исполнения. При строительстве наклонного ствола с сечением в проходе 17,9 м 2 возникла необходимость электрохимического укрепления обводненных неустойчивых наносов из глинистых пород мощностью 23 м. При применении арочной металлической крепи типа СВП-22 в комбинации с монолитной бетонной оболочкой толщиной 0,3 м расчетным путем установлено, что толщина упрочненной оболочки должна составлять 5,2 м при минимальном значении коэффициента сцепления закрепленного грунта 0,39 МПа. Согласно проекту укрепление грунта проводилось с помощью электродов-инъекторов в виде труб диаметром 100 мм, длиной 6 м, шестью заходками по глубине по 5 м с расстоянием между электродами по радиальным направлениям и по дуге окружности 1 м. Таким образом, участок упрочнения имел форму цилиндра высотой 30 м и диаметром 15 м. Для упрочнения применялся раствор силиката натрия и хлористого кальция в соотношении 1: 1 плотностью 1,08 г/м 3. Результаты лабораторных испытаний образцов обработанных грунтов приведены в табл. 1.

В первой серии электрохимическое упрочнение проводили на 10 парах скважин. Время электрообработки со сменой полярности анодов и катодов составило 120 ч. При нормативном расходе электроэнергии 10 кВт ч/м 3 и напряжении 50 b плотность тока составила 2,78 А/м. По данным испытаний время набора прочности К = 0,39 МПа составило t пл= 15 сут. = 360 ч.

После завершения электроосмотической обработки массива в средней части между катодом и анодом на расстоянии 0,3 м установили измерительные электроды на глубину 1 м. Для исключения влияния обнажения на результаты контроля верхняя часть измерительных электродов была изолирована на глубину 0,5 м. Измерения проводились каротажным прибором КП-2. Результаты контроля приведены в табл.2.

Достижение прочности массива К Н = 0,39 МПа произошло в момент t гс= 270 ч, что на 25% меньше планового значения. На основании результатов контроля был скорректирован режим электрообработки: сокращено время обработки с 120 до 100 ч.

Контрольные измерения на последующих участках упрочнения показали, что время набора прочности увеличилось и стало близко к нормативному. Таким образом, применение данного способа позволило снизить расход электроэнергии на 20%.

РИСУНКИ


Преимущества перед известными аналогами

Исключение наличия ослабленных зон в упрочненном массиве.

Стадия освоения

Способ (метод) проверен в лабораторных условиях

Результаты испытаний

Соответствует технической характеристике изделия (устройства)

Технико-экономический эффект

Сокращение сроков строительства на 20 %, снижение трудозатрат, расхода электроэнергии и материалов на 20%.

Возможность передачи за рубеж

Возможна передача за рубеж

Дата поступления материала

11.10.2005

Инновации и люди

У павильонов Уральской выставки «ИННОВАЦИИ 2010» (г. Екатеринбург, 2010 г.)

Мероприятия на выставке "Инновации и инвестиции - 2008" (Югра, 2008 г.)

Открытие выставки "Малый бизнес. Инновации. Инвестиции" (г. Магнитогорск, 2007 г.)

Демонстрация разработок на выставке "Малый бизнес. Инновации. Инвестиции" (г. Магнитогорск, 2007 г.)